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Shock Scattering 
in a Multiphase Flow Model 

Daniel E. Klem 
UCRL-XX-YYYYYY 

Multiphase flow models have been proposed fo r  use in situations which have 
combined Rayleigh- Taylor (RTI)  and Richtmyer-Meshkov (RMI)  instabilities[2, 
31. Such an approach work9 poorly for  the case of a heavy to light shock in- 
cidence on a developed interface. The physical original of this dificulty is  
traced to an inadequate model of the interfacial pressure term as it appears 
in the momentum and turbulence kinetic energy equations. Constraints on 
the form of a better model from a variety of sources are considered. I n  this 
context it is observed that a new constraint on closures arises. This occurs 
because of the discontinuity within the shock responsible for  the RMI. The 
proposed model (Shock Scattering) is shown to give useful results. 

Introduction 

Multiphase flow models have been proposed for use in situations which have combined 
Rayleigh-Taylor (RTI) and Richtmyer-Meshkov (RMI) instabilities[2, 31. Such an 
approach works poorly for the case of a heavy to  light shock incidence on a developed 
interface. This occurs because of an inadequacy in the modeling of the interfacial 
pressures. The situation is illustrated in Fig. 1. A shock interacting with a complex 
surface produces transmitted and reflected waves which cannot be represented by the 
mean flow U i .  Note that this difference uy = ui - Ui between the actual complex 
velocity ui, and the mean flow Ui arises from a shock-mix interaction, and not from 
a shock-turbulence interaction. I.e., initially uy = 0. 

In most models fluid motions which cannot be represented by Ui are absorbed into 
a quantity like k = -L . p z ~ y u ~ . ~  If this is the case, then we should expect a source 
term in the time evolution equation for k of the form 
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- . . . + E'(shocks, mix) (1) 
d + . . . - 

lThis is t,lit! simplest case. 0110 might. also have multiple k's for t,he small ami large scales, 
direct,ion specific k's t.o captiire anisotropies in the flow, etx. 





(trivially if the phase is not present). It contains only a single velocity ui. This 
increase in complexity is required for the simple reason that one now needs to keep 
track of the locations of n different materials. Associated with this is a single (vector) 
momentum equation 

d d 8 P  
dXj dXi Z ( P V i )  + -(pujuz) = -- (3) 

and an analogous equation for the internal energy. 

The need for a model arises when the complexity of the flow makes the calculation 
of details of the interpenetration (mix) impractical or unnecessary. In such a case it 
is hopefully not necessary to know pr at every point in space and time, but rather 
i t  is sufficient. to know only an average value pr. The bar here denotes an averaging 
operation which is to be understood in either an ensemble or (maybe) a volume sense. 
See reference [l]. The equation for the averaged quantity is obtained almost trivially 

a d  
- + -(m) = 0, at d X a  (4) 

where the second term illustrates the problem. This term contains an unknown 
correlation between the presence of the phase-r ( p r )  and the velocity (ui). Hence the 
problem of mix modeling reduces to that of modeling the correlation m. 

As an aside it is useful to consider a path commonly taken in mix modeling. One 
can define both an average density i j  and a mass weighted average velocity 21i = m/p 
without regard to  the presence of absence of a particular phase. From this one can 
define a velocity fluctuation uy = ui -21i which makes it possible to write the previous 
equation as 

Since the advection term on the left-hand side cont,ains the same velocity for every 
phase, this term will not produce any mixing. The problem then reduces to modeling 
the correlation in 
to concede defeat 

- I I - - - 
the term on the right side pruy. At this point it is not uncommon 
by invoking a gradient diffusion closure. I.e., taking 

where D 0; &A, for instance. While a closure such as this has a very definite practical 
advantages in its implementation, its utility for modeling instability driven mix is 
unproven. Given that it has its motivation in the ideas of isotropic turbulence and 
analogies to kinetic theory, it is not obvious that such a closure should be applicable to 
the present problem. Such closures are often accompanied by complicated turbulence 



turbulent mixing layer was observed to first grow, then demix during the deceleration, 
and then resume growing during the final coast phase. This subsequent regrowth is 
interpreted as being due to  the turbulence[2]. 

The two fluids here (actually a calcium chloride solution and hexane, densities of 
1.142 g/cm2 and 0.66 g/cm2) are modeled with a scaled a ideal gas equation-of-state. 
The initial temperature distribution through the problem is set to  produce the pres- 
sure gradient required to give a uniform initial acceleration. Subsequent changes in 
the acceleration are implemented through changes to  the external pressure boundary 
conditions and necessarily produce a series of small shocks (below the threshold for 
the shock finder). The results of the simulation are compared to the experiment in 
Fig. 4. Reasonable agreement is obtained. 

This is a significant experiment because it tests not only the multiphase flow 
part of the model, but also the IC1 turbulence part. A substantial effort was devoted 
to finding parameters which would simultaneously fit both this experiment and the 
reshock experiment. The nature of the difficulty is as follows. The length scale I is 
a sort of quasi-conserved quantity. 1.e.) just because one would like more JZdx, does 
not mean the terms on the  right-hand side will produce it. In order to grow the mix 
region, the model must increase JIdx.  In the case of the RTI, the Sl term generates 
the required I .  In the current case the Sl2 term was added to  enable the growth of 
the mixing region in the reshock experiment. It does this by allowing turbulence to 
generate I after the passage of the shock. While it appears possible to match the 
Vetter experiment with a variety of values of cl0 and qSc2 (they are anti-correlated), 
not perturbing the acceleration / deceleration experiment is more difficult. This sets 
an upper limit on the value of qSc2 (larger values produce too much mix at late 
times). The resulting value of c10 = 4 appears large in that it implies that the energy 
removed from the main flow and moved into IC is about the same size as that moved 
into internal energy.9 If the change in IC produced by the passage of the shock is, in 
fact, too big, then another mechanism for producing I may be required. 

Conclusions 

This paper has proposed an  innovative method to improve the behaviour of an ex- 
isting model for the mix from combined RMI and RTI. The added terms improve 
the modeling of the interfacial pressures. Reasonable agreement is obtained with two 
experiments; one RM and the other RT. Additional comparisons to other mix exper- 
iments are required. A further examination of the modifications to the I equation is 
planned. 



- 
models (perhaps to obscure the fact that the proponent gave up on the initial pTuy 
term). 

In any case a more reasonable path is to model the mass flux in question prui 
and then use it t o  define a phase specific mass averaged velocity GT,i = m/&. This 
results in a set of phase specific mass conservation equations (Le., multiphase flow 
equations) 

Note that this procedure has closed these equations without introducing a closure 
approximation as such. 

This is a cute trick if one can produce an evolution equation for &,a. Such an 
equation can, in fact, be obtained as follows. If the momentum equation is valid at 
every point in space, then it is also valid in the phase-r. I.e., 

" 
\ + \ " / 

everywhere: within phase-r: 
simple boundary conditions complicated boundary conditions 

where the two equations differ only in the presence of the subscript r on the density pr 
on the right-hand equation. The cost of this is that while for the left-hand equation 
one has very simple boundary equations (i.e., at the edges of the box), for the right 
hand equation one has to specify the boundary conditions between the phases. 

From averaging the right-hand equation one obtains[ 11 

where pr = p,/f,, X ,  is a characteristic function for phase-r which is 1 in phase-r 
and 0 elsewhere, and the volume fraction f, = X,. The first three terms on the left 
are the analogues to the unaveraged terms in the momentum equation. The last two 
terms on the right arise arise from the averaging process. The first is analogous to 
the Reynold's stress which occurs in the usual Reynolds or Favre averaging. In this 
case it differs in that the velocity fluctuations are with respect to  the phase specific 
mass averaged velocity Gr,a, and not with respect to  the overall mass average velocity 
&. 

The second term arises because the averaging operation was performed over only 
the phase-r and the average of the pressure gradient within the phase-r is not the 

- 



same as the gradient of the average of the p re s~ure [ l ] .~  This term is typically modeled 
as drag between the two phases. 

Before preceeding with this, it is worthwhile t o  consider whether anything was 
obtained from this exercise. The answer to this is an emphatic yes, as the model at 
this point is able to  produce mixing (and demixing). To see this consider a simple 
problem with a constant pressure gradient gi = ib azi with the fluids initially at rest. 
Then the momentum equation initially reduces to  

From this it is clear that  the acceleration of each phase-r will go like l/pT. The 
subsequent velocity separation will result in either mixing or demixing depending on 
the sign of gi and the initial conditions. Models based on this formalism are also 
inherently anisotropic and will provide a sort of automatic scale separation if a model 
is included for the Reynolds stress (i.e., a k-equation, etc.). The costs of this are 
interfacial pressures to  model and phase specific Reynolds stresses. 

Drag is not enough 

As was indicated above, the interfacial pressures which appear in the momentum 
equation are typically modeled as drag between the phases. This is not adequate in 
the presence of shocks. To see this it is useful to  consider the Reynolds stress which 
appears in the momentum equation 

From this one can obtain an equation for the energy not resolved in the &,i if we 
proceed as follows. First, assume that all the anisotropies are handled by the mean 
flow variables ii,i = m / ( f T p T ) .  If this is the case. then one can define a phase 
specific turbulence kinetic energy 

If we make the further assumption that all the phases have similar velocity fluctuations 
kT, then one can, without loss of information, sum over the phases to  define a total 
turbulence kinetic energy 

1 1 -E fTfTkT = -E f T T T,Z2 .. 
P T  2p T,Z 

4I probably differ from reftrencc: [ 11 on t,he irit,crprtitat,iori of t,he rt:siilt,ing terms. The form givcm 
here is clearer in any case, and likely mort correct,. 



The usual manipulations starting from the momentum equation (along with the as- 
sumptions above) eventually produce 

where the first line contains the terms analogous to the single material case and the 
second line contains the terms arising from the surface pressure terms in the mo- 
mentum equation. These later terms are obviously not small and have been modeled 
previously as sources of the energy lost from the velocity slip due to  drag and added 
mass effects[2, 31. This is inadequate in the case of a shock interacting with a re- 
gion containing multiple materials. Further, if a mixed region is initially at rest then 
u:,~ = 0, and as a consequence Ti, = 0 and similarly for the triple correlation. Hence, 
only the surface pressure term is available to  generate k as is required according to 
the argument presented in the introduction. This appears plausible since neither the 
pressure nor the mean flow velocities which appear in this term vanish. The model 
for this will be called “shock scattering” as was explained in the introduction. 

Shock Scattering 

At this point it is clear that there exists a need for a pair of additional terms in the 
momentum equation and the k-equation. I.e., ET,i and E’ as in 

- ( p k )  d + -(iizpk) d = . . . + E ’  
at dxi 

Constraints on these two terms arise from the following 

1. Conservation of energy and momentum (terms in both the equation for k and 
the equation for & are clearly required.) 

2. Invariance of the term added to the k equation under changes of the frame of 
reference. 

3. No dimensional constants in either term. 

4. Both terms should be independant of the length scale. 

5. Well behaved in the presence of shocks. 



Well behaved in the presence of shocks 

Substantial constraints are placed on the form of and E’ (as well as any other term 
which is used in a mix model) by the requirement that  these terms have meaningful 
behaviour in the presence of discontinuous solutions (i.e., shocks). Recall that  there 
are subtle issues when shocks form in any system of differential equations. The two 
derivatives & and are not defined (in the usual sense) at a discontinuity. For 
systems of conservation laws this can be dealt with through the ideas of generalized 
functions and weak solutions[5]. I.e., 

an equation like: 

is interpreted to mean: / L { P ~ + Q ( P ) ~ }  at dX = 0 

where 4 is an arbitrary test function with compact support on R, p is some density, 
and Q(p) is some flux. For continuous p and Q(p) these two equations are equivalent 
and can be obtained from each other by integration by parts. If p or Q(p)  become 
discontinuous only the second equation actually has meaning. F’rom these sorts of 
considerations one also obtains the jump condition [p] U = [Q(p)] (where [XI means 
the change in X across the shock). Because mix models do not generally appear 
in conservation form5, the situation with respect to discontinuous solutions is very 
murky indeed. Never-the-less, it is clear that  the issue of the interpretation of these 
models in the presence of shocks does not go away just because it has been ignored 
to  date. This issue may become worse in the models than in the Euler equations 
because of the presence of higher order derivatives and/or products of derivatives. 

One can, never-the-less, see that a simple necessary condition exists for these 
terms to have meaning in the presence of shocks6 If one considers a potential closure 
E‘ which appears on the right-hand side of some time evolution equation (of pk for 
instance) 

d 
%(pk) + . * - - . . .+E’  

then a set of necessary conditions for this term to  be meaningful in the presence of 

“This has never happened t,o my knowledge. 
f;I want to e~nphasize that, t,his is a neccssary but not necessarily sufficient condit,ion for the ternis 

in question to have meaning. If t,he model were expressed in conservation form, then that would 
clearly be sufficient. The question as t,o whether some clever matheinat,ics exists (or can be invented) 
t,o give meaning t,o t,he model without, putting it, int,o conversation form appears to be opt?n. 



shocks is7 
-finite 

E’dt = Snon-zero (20) 
l h o c k  { -depends only on the jumps a,cross the shock 

In general one can show that (‘good” terms ‘(work” by using integration by parts to 
move the derivatives off the discontinuous functions (so to  speak). For “bad” terms 
no such manipulations appear possible, and it seems to be necessary to introduce a 
particular continuous form for the step, do the integration explicitly, and then show 
that the result is not defined (and therefore “does not work”) as the step is allowed 
to become discontinuous. Since the latter is somewhat more transparent, it will be 
used throughout. Consider a test function 

u1 if x + d < O  

{ u ~ = u ~ + A u  if A < x + c t  
u b = u b ( x + d ) =  u 1 + ( x + d ) %  if O < x + d < A  (21) 

i.e., a linear ramp in u which goes from u1 to u2 over an interval A and which 
propogates with a velocity c. (The superscript tj is used to indicate a discontinuous 
function.) Then it is trivial to see that in the limit A + 0 a continuous function 
times the derivative of a discontinuous function is O.K. 

Au 
l h o &  Xdt  - - C 

(22) 
ad  An example of such a term is the pressure 

gradient in the momentum equation. 

Several other terms also work. The product of a discontinuous function and the 
derivative of a discontinuous function is O.K. 

(23) 
dub Ah, Au Like the pdV term in the in- hh-dt * (hi + y)- Lo* ax  C ternal energy equation. 

The product of a continuous function and the  n’th derivative 
function also works 

d”-lh Au 
d t  __f ( - l y  f- 

l h o c k  haan$ ax-1 c 

of a discontinuous 

(24) 

This last case follows, roughly speaking, because one can take arb-trary derivatives of 
&functions. (Although this might be hard to actually make work in a real code ...) 

There are also at least a couple of terms which do work. 

The product of the derivatives of two discontinuous functions 
,. 2.h 2-h A -  A,.  uy ’ V U ’  u y  * u U  

dt  - -00  
l h o c k  dJ:z C - A  (25) 

7The requirement, that. the result be non-zero is not. strictly necessary, zero being a perfectly good 
number. However, such a term is clearly of no use in modeling the shock-mix interaction. 



and the product of a discontinuous function and the second derivative of a discontin- 
uous function 

d2Ub A g  . AU 
gb-dt _.) - __f -00 

Lhock  d X 2  c * A  

are both undefined. This is roughly the equivalent of saying that there is no mean- 
ing t,o multiplying &functions. (Note that these ttwo cases are also related by an 
integration by parts.) Note also that the first of these rules out the use of 2e.62 

Some terms are zero. 

These are a couple of almost trivial examples. The integral over a shock of either a 
continuous or discontinuous function vanishes. 

J f d t  = J gbdt = O  
shock shock 

The point here being that one requires a certain degree of singular behavior out of 
the term in order t.0 get a non-zero contribution as the width of the shock goes to 
zero. More complicated terms can also be zero. For instance 

J ” ( g h $ ) d t  = J --+J agb dub gbs d2Ub 
shock dX shock d X  dX shock 

(28) 
A g - A u  Ag-AU 

c - A  c * A  - = o  - - 

Figure 2 shows a rather schematic representation of this potential source term. The 
point to appreciate is that one might have difficulties integrating this numerically and 
actually getting zero. 

Terms which “do not work” are commonly used in turbulence modeling. 

Some of the terms indicated above which “do not work” are used in turbulence mod- 
eling in cases where there are typically no shocks. An example of such a situation is 
a common closure for the Reynolds stress[7]. 

The labels A and B will be used in the discussion below as these two parts of the 
closure behave in a very different manner in the presence of a shock. This term 
appears in both the momentum equation and in the equat,ion for I C ,  acting as a sort of 





of the zone size (since shocks are typically spread over a few zones by artificial viscous 
effects of one sort or another). This means that models with such terms will prevent 
the code from reaching a converged answer as the zone size is reduced. In a code 
with explicit viscous effects, “bad terms” will produce effects which depend upon the 
viscosity. As shock interactions are generally thought to be independent of the actual 
viscosity and thermal conductivity which determine the width of the shock[6], this 
would appear to  be the wrong physics. 

These observations are not entirely new. At least one author[8] understood that 
some of these terms get too big, and that limiters must be used. While anecdotal 
evidence suggests that the use of limiters may be more wide spread and not gener- 
ally reported in the literature[4, 91, it is not clear that the fundamentally undefined 
character of these terms has been appreciated. To put this another way, the difficulty 
here goes beyond the idea of realizability constraints. [7] 

Lastly, one should ask if there are any ways around the difficuties described in 
this section. If the model were to act upon the mean flow variables so as to  induce a 
correct shock width (in the average sense), then all the “bad” terms would be defined. 
Such an interaction is expected in some sense, of course, because the Reynolds stress 
term in the momentum equation can have the form of a viscosity. The usual closure 
will presumably not work in the present case because it is (at best) a shock-turbulence 
interaction and not a shock-mix interahon. Even with a closure which induces the 
correct shock width, it might be a difficult task to get overall reasonable behaviour. 
I.e., it is not clear that a “bad” term with a value of A proportional to the average 
shock width induced by the passage through a mix material would give reasonable 
behaviour. Such a model would also require that the resolution in the simulation be 
adequate to resolve the shock width. 

Dimensional Analysis 

If the new term in the k-equaiton is to not have a dimensionful constant out front, and 
if it  does not depend on the length scale I in the problem, then it is straightforward 
to show that 

d 
0 . .  = c . p  d 

,(Pk) + (33) 

where the derivative & could be applied to any combination of the powers of p, u, 
and p .  At. this point a remains a free parameter. 

Invariance 

It is well known that E’ must be invariant under a change in coordinate systems. 
The term u 1+2Q above might break such an invariance. This can be “fixed” either by 



taking the exponent of u to be zero so that a = -1/2, or by taking the exponent to 
be one so that a = 0 and letting the derivative operate on it. These two cases result 
in 

The left one being roughy a pressure gradien 
a p S V  work term. 

dU c .  p- 
a -+ . . .  = 
at dX (34) 

imes a sound speed and the right one 

Conservation of Energy and Momentum 

Lastly, the need to conserve momentum and energy forces the selection of the right- 
hand term. The total energy equation is obtained by multiplying the momentum 
equation in two forms by u and adding these to the equations for k and internal 
energy. Conservation is achieved if the combined term u Er,i + E' either vanishes 
or forms a total divergence. The first of these would correspond to a purely local 
exchange of energy between the mean flow and k. The second case allows for energy 
transport as well as exchange. The first would require an inverse power of u in the 
term in the momentum equation and, therefore, appears to be unreasonable. Hence 
the only possible forms for Er,i and E' appear to be 

8 P  E,?Z = c * - 
dX 

and (35 )  

which is exactly the same form as the p 6 V  work terms which exchange energy between 
the mean flow and internal energy. Note also that the term in the momentum equation 
must be a divergence so as to conserve momentum. 

Non-dimensional factors 

At this point we are required to specify the form of the non-dimensional factor C. 
As was discussed above, this term must be sensitive to 1) the presence of a mixed 
region, and 2) the presence of a shock. Toward this end I first introduce 

which is the product of two factors. The first will be sensitive to  the presence 
of a shock. The second (the sum) is sensitive to the presence of a mixed region. 
Specifically 



C1 17.25 - 5.25. At drag 
c2 0.75 turblent length scale w.r.t. 1 
c4 0.09 dissipation of turbulent KE 
c5 2.0 mass diffusion 
c7 1.0 turbulent KE diffhalull 
c8 2.0 length scale diffusion 
C ~ O  4.0 shock scattering 
~ 1 1  0.005 mix trigger 

I CRSS I o a o . 3  I compression / expansion scale factors I 
Clsc 1 .o length scale source 
clsc2 1 .o length scale due t,o diffusion 

Table 1: Parameters used in the simulations described below. As described in the 
text, some have been picked to fit. the data, others are from the literat,ure[2, 31. 

so that E, frHr,i is just a weighted sum of Atwood numbers. The Fi term is the n’th 
root of a product over phases 

0 iff 

1 iff 6uh < 6ui 

and sui = u. 2 - T  1 - ui+;, suo = ~ 1 3 ~ ~  66u = ~ 1 3 ~  . ~13b, 6ul = SUO - 6621, and 6uh = 
Suo - 66u. While the algebra is a little tedious, the function Fi simply implements 
a smooth transition from zero to one as the relative velocity between two zone edges 
goes from less than 6uo = ~ 1 3 ~  to greater than 6u0. The final result is 

where c10 is a constant. Note that Hi must appear inside one derivative and outside 
the other so that the resulting combined term in the total energy equation is still a 
tot a1 divergence. 

Length scale sources 

As will be discussed below, changes were also required to the length scale source terms 
in order to match the da.t,a. The dilatation term was given separate scale factors for 



expansion and compression, and an additional source which allows purely turbulent 
mix to  generate its own length scale has been added. 

In addition to the above, it was found necessary to limit the development of 
additional velocity separation during shocks so as to  prevent a sort of double counting 
from occurring. This is accomplished by interpolating between the pressure gradient 
given above, and the form which occurs in the single fluid case. This interpolation is 
based on Fi defined above to identify shocks. 

Implementat ion 

The model has been implemented as a 1-D Lagragian hydrocode. The final form is 
as follows. 

+ 

+ 
+ 

0 

Reynolds stress 

Reynolds stress 11 -& ( A ~ D ~ E )  

shock scattering -I+- 

(42) 

(43) 

(44) 

I-scale I-scale 

+ S l + p q  
dl dl l a  
at dX A ax -+(f i+ul)-  = --- 

where 



T =  -pT- -  4 aii + 2. 
3 a x  3p 

As has been indicated previously, this is derived from the work of Youngs[2, 3, 41. 
Deviations from that work are indicated in the boxes. They fall into four groups. 

limited by 0 < T < -pk (see [SI) 4 

0 Shock scattering terms (proportional to  clo) appear in the momentum and k- 
equations. 

0 Reynolds stress terms of a different sort also appear in these two equations. 
Note the need for a limiter on T .  

0 The definition of ii as it appears in the p6V work term in the energy equation 
has been changed. This allows a “bad” term to be deleted from the k-equation 
as discussed above. 

0 Two length scale source terms in the length scale equation are changed. 

The parameter set used in the simulations is given in Table 1 

Comparison to Experiments 

This effort was originally motivated by the known inability of the model to handle 
heavy to  light RMI. This section compares the model to  two experiments. The first is a 
heavy to  light reshock experiment in which improved behaviour is observed. Since the 
changes (particularly those to the length scale sources) will change the behaviour of 
the model in general, a comparison is made to  an acceleration / deceleration “rocket 
rig” experiment. A reasonable agreement with the data is obtained, with the two 
experiments together substant,ially constraining the model. 

Reshock Experiment 

The first comparison is to the reshock experiment of Vetter and Sturdevant[lO]. This 
is an air-SFG Mach 1.5 shock tube experiment. The initial interface is formed by a 
flat membrane. The incident shock brakes the membrane and then is reflected from 
the end wall (62cm from the inital interface location). This reflection (a heavy to 
light shock) accelerates the interface approximately 3.4 msec. after the initial shock 
and is observed to cause a substantial growth in the mixing rate. 
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